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Abstract. A picture fuzzy multirelation over picture fuzzy multi-
set, defined via (r, s, t)-cut set provides a means of studying the relation-
ships at various thresholds of positive, neutral, and negative membership
degrees. In this paper, we have introduced the notion of picture fuzzy
equivalence multirelations over picture fuzzy multisets via (r, s, t)-cut set
of picture fuzzy multirelations and investigate some of the properties re-
lated to them. We have shown that a picture fuzzy multirelation over a
picture fuzzy multiset is a picture fuzzy equivalence multirelation if and
only if the (r, s, t)-cut set of the picture fuzzy multirelation is an equiv-
alence relation. The picture fuzzy equivalence class with respect to the
picture fuzzy equivalence multirelation on a picture fuzzy multiset was
defined and it was proved that the two picture fuzzy equivalence classes
of a picture fuzzy equivalence multirelation are equal with respect to the
(r, s, t)-cut set of picture fuzzy equivalence multirelation. Furthermore,
we have established that the intersection of two picture fuzzy equivalence
multirelations on a picture fuzzy multiset is again a picture fuzzy equiva-
lence multirelation on the picture fuzzy multiset but their union need not
be a picture fuzzy equivalence multirelation. This development of picture
fuzzy equivalence multirelation can be employed to form new methodolo-
gies for dealing with complex, multi-dimensional relationships in uncertain
environments, and also its applications can be explored in decision-making
problems, clustering and data analysis.
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1. Introduction

Fuzzy set theory which accommodates only degree of membership was intro-
duced by Zadeh, 1965 [1] as an extension of classical set theory. This theory has
numerous extensions and has been applied to various real life problems such as in
medicine, economics, engineering etc (See [2, 3, 4, 5, 6] for more details). Zadeh’s
work was generalised to intuitionistic fuzzy set by Atanassov, 1984 [7] to accommo-
dates the additional degree, degree of nonmembership in addition to the degree of
membership of an element of a given set. Many researchers have studied intuition-
istic fuzzy set and applied it to real life decision-making problems (See [8, 9, 10] for
more details).

In 2013, Cuong and Kreinovich [11] generalised both fuzzy set and intuitionistic
fuzzy set to picture fuzzy set. In other theories before the adventure of picture fuzzy
set, the degree of neutrality was not incorporated. This important concept can be
seen in the voting system where human beings are of the opinions to vote for, vote
against, abstain from voting and refusal of voting, and also in medical diagnosis.
The theory of picture fuzzy set has been widely studied and applied in various real
life problems such as decision-making problem [12, 13, 14, 15, 16], image processing
[17] and pattern recognition [18].

Zadeh, [19] generalised the classical relation to fuzzy relation and also introduced
the fuzzy versions of reflexivity, symmetric and transitivity which resulted into the
equivalence relation. Some of the properties of fuzzy relations and fuzzy equiva-
lence relations were established by Murali and Nemitz in [20] and [21], respectively.
In [22], Bustince and Burillo introduced the notion of intuitionistic fuzzy relations
and established some of the properties. Some properties of the composition of in-
tuitionistic fuzzy relation were obtained by Deschrijver and Kerre [23]. In [24], Hur
et al studied some properties of intuitionistic fuzzy equivalence relations, and also
introduced the notion of intuitionistic fuzzy transitive closures and level sets of an in-
tuitionistic fuzzy relation and obtained some of their properties. Rajarajeswari and
Una in 2013 [25] introduced the concept of intuitionistic fuzzy multirelations, studied
basic properties and the inverse of intuitionistic fuzzy multirelations and obtained
reflexitivity, symmetry and transitivity of intuitionistic fuzzy multirelations.

Picture fuzzy relation (PFR) was first introduced by Cuong and Kreinovich [11] as
a generalisation of fuzzy relation (FR) and intuitionistic fuzzy relation (IFR). Some
properties of composition of PFRs was examined by Phong et al [26] and a new
approach for medical diagnosis using composition of fuzzy relations was proposed.
Dutta and Saikia [27] introduced equivalence picture fuzzy relation (EPFR) and
obtained some of its properties such as equivalence class, intersection and union of
equivalence relations via cut set of picture fuzzy sets. Hasan et al [28] defined max-
min and min-max compositions for PFRs, some of their properties were investigated
and applied in decision making. In [29], Hasan et al defined PFR over PFS, numer-
ous properties related to PFR were established and some operations were discussed
with examples. Sangodapo and Nasreen, [30] introduced Picture fuzzy multirelation
(PFMR) as an extension of PFR. Some of its basic properties, and inverse of PFMR
and their properties were obtained, some operators, Arithmetic mean, Geometric
mean and Harmonic mean operators were derived and illustrated with examples to
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establish both operations and operators. Also, composition of PFMRs was defined
and properties associated with them were obtained. Sangodapo [31] contributed to
the work of Sangodapo and Nasreen [30] by discussing reflexivity, symmetricity and
transitivity of PFMRs over PFMs and some properties associated with them.

In this paper, contribution was made to the work of Sangodapo [31] by introducing
picture fuzzy equivalence multirelation (PFEMR) and to obtain its associated prop-
erties. Also, Dutta and Saikial’s work [27] was generalised from EPFR to PFEMR.
Organisation of the paper is as follows; Section 2 reviews the preliminaries on pic-
ture fuzzy sets, picture fuzzy multisets and picture fuzzy multirelations. Section 3,
introduces the picture fuzzy equivalence multirelation and establishes its associated
properties.

2. Preliminaries

In this section, we list some preliminaries of picture fuzzy sets, picture fuzzy multisets
and picture fuzzy multirelations.

Definition 2.1 ([11]). Let X be a universe. A picture fuzzy set (briefly, PFS) N of
X is an object of the form

N = {〈r, σN (r), τN (r), ηN (r))|r ∈ X〉},
such that σN (r) ∈ [0, 1] is referred to as the degree of positive membership, τN (r) ∈
[0, 1] is called the degree of neutral membership and ηN (r) ∈ [0, 1] is called the degree
of negative membership of r ∈ N and for all r ∈ X,

σN (r) + τN (r) + ηN (r) ≤ 1

and the degree of refusal membership of r ∈ N is 1− (σN (r) + τN (r) + ηN (r)).

Definition 2.2 ([11]). Let N1 and N2 be two PFSs. Then

• N1 ⊆ N2 if and only if for all r ∈ X, σN1
(r) ≤ σN2

(r), τN1
(r) ≤ τN2

(r) and
ηN1

(r) ≥ ηN2
(r),

• N1 = N2 if and only if N1 ⊆ N2 and N2 ⊆ N1,
• N1 ∪N2 = {(r, σN1(r) ∨ σN2(r), τN1(r) ∧ τN2(r)), ηN1(r) ∧ ηN2(r))| r ∈ X},
• N1 ∩N2 = {(r, σN1

(r) ∧ σN2
(r), τN1

(r) ∧ τN2
(r)), ηN1

(r) ∨ ηN2
(r))| r ∈ X},

• N1 = {(r, ηN1
(r), τN1

(r), σN1
(r))| r ∈ X}.

Definition 2.3 ([11]). Let N be nonempty set. Then a picture fuzzy relation (briefly,
PFR) U is a PFS over N defined as

U = {〈(r1, r2), σN (r1, r2), τN (r1, r2), ηN (r1, r2)〉|(r1, r2) ∈ N ×N}
with σN : N × N → [0, 1], τN : N × N → [0, 1], ηN : N × N → [0, 1], such that
0 ≤ σN (r1, r2) + τN (r1, r2) + ηN (r1, r2) ≤ 1 for every (r1, r2) ∈ N ×N.

Definition 2.4 ([32]). Let X be a nonempty set. A picture fuzzy multiset (briefly,
PFMS) N in X is characterised by three functions namely the positive member-
ship count function pmc, the neutral membership count function nemc and the neg-
ative membership count function nmc such that pmc : X → W , nemc : X →
W and nmc : X → W , respectively, where W is the set of all crisp multisets
drawn from [0, 1]. Thus, for any r ∈ X, pmc is the crisp multiset from [0, 1]
whose positive membership sequence is defined by (σ1

N (r), σ2
N (r), · · · , σn

N (r)) such
3
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that σ1
N (r) ≥ σ2

N (r) ≥ · · · ≥ σn
N (r), nemc is the crisp multiset from [0, 1] whose

neutral membership sequence is defined by (τ1N (r), τ2N (r), · · · , τnN (r)) and nmc is
the crisp multiset from [0, 1] whose negative membership sequence is defined by
(η1N (r), η2N (r), · · · , ηnN (r)), these can be either decreasing or increasing functions
satisfying 0 ≤ σk

N (r) + τkN (r) + ηkN (r) ≤ 1 ∀ r ∈ X, k = 1, 2, · · · , n.

Thus N is represented by

N = {〈r, σk
N (r), τkN (r), ηkN (r)〉|r ∈ X}

k = 1, 2, · · · , n.

Example 2.5. Let X = {a, b, c}. Then the PFMS N is given as
N = {〈a, (0.6, 0.3, 0.1), (0.8, 0.05, 0.1)〉, 〈b, (0.7, 0.1, 0.2), (0.5, 0.3, 0.2)〉,

〈c, (0.4, 0.3, 0.3), (0.65, 0.2, 0.15)〉}.

Definition 2.6 ([32]). Let

N1 = {〈r, σk
N1

(r), τkN1
(r)), ηkN1

(r)〉| r ∈ X}
and

N2 = {〈r, σk
N2

(r)), τkN2
(r), ηkN2

(r))〉| r ∈ X}
be two PFMSs drawn from X. Then

• N1 ⊆ N2, ⇔ (σk
N1

(r) ≤ σk
N2

(r)), (τkN1
(r) ≤ τkN2

(r)) and (ηkN1
(r) ≥ ηkN2

(r)),
k = 1, 2, · · · , n, r ∈ X,

• N1 = N2, ⇔ N1 ⊆ N2 and N2 ⊆ N1,
• N1∪N2 = {(r, (σk

N1
(r)∨σk

N2
(r)), (τkN1

(r)∧τkN2
(r)), (ηkN1

(r)∧ηkN2
(r)))| r ∈ X}, k =

1, 2, · · · , n,
• N1∩N2 = {(r, (σk

N1
(r)∧σk

N2
(r))(τkN1

(r)∧τkN2
(r)), (ηkN1

(r)∨ηkN2
(r)))| r ∈ X}, k =

1, 2, · · · , n,
• N ′1 = {(r, ηkN1

(r), τkN1
(r), σk

N1
(r))| r ∈ X}, k = 1, 2, · · · , n.

Definition 2.7 ([30]). Let N be a nonempty set. Then a picture fuzzy multirelation
(briefly, PFMR) U on N is PFMS defined by

U = {〈(r1, r2), σk
U (r1, r2), τkU (r1, r2), ηkU (r1, r2)〉|(r1, r2) ∈ N ×N}

where k = 1, 2, · · · , β (β is the cardinality of the PFMS Z) σk
U (r), τ iU (r), ηkU (r) :

X →W, and W is the set of all crisp multisets drawn from [0, 1].

Example 2.8. Consider a scenario where a company evaluates his employees pro-
ficiency in various skills. Let N1 = {e1, e2, e3} represent employees and N2 =
{s1, s2, s3} represents skills. Then the PFMS reflects the proficiency of each em-
ployee in each skill, expressed as follows:
σ(n1, n2) stands for positive membership, representing confidence in the skill,
τ(n1, n2) stands for neutral membership, representing uncertainty and η(n1, n2)
stands for negative membership, representing a lack of proficiency.
Thus PFMR is given as:

U = {〈((e1, s1), (0.6, 0.2, 0.2)), ((e1, s2), 0.8, 0.1, 0.05), ((e1, s3), 0.7, 0.1, 0.2),
((e2, s1), 0.5, 0.3, 0.2), ((e2, s2), 0.65, 0.2, 0.1), ((e2, s3), 0.75, 0.05, 0.15),
((e3, s1), 0.9, 0.05, 0.04), ((e3, s2), 0.85, 0.1, 0.05), ((e3, s3), 0.45, 0.4, 0.1)〉}.

So for (e1, s1),
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σ(e1, s1) = 0.6 employee e1 is highly proficient in the skill s1, τ(e1, s1) = 0.2 em-
ployee e1 is slightly uncertain about e′1s proficient in the skill s1 and η(e1, s1) = 0.2
employee e1 lacks proficient in the skill s1.
For (e1, s2),
σ(e1, s2) = 0.8 employee e1 is highly proficient in the skill s2, τ(e1, s2) = 0.1 em-
ployee e1 is slightly uncertain about e′1s proficient in the skill s2 and η(e1, s2) = 0.05
employee e1 has almost no lack of proficiency in the skill s2.
For (e1, s3),
σ(e1, s3) = 0.7 employee e1 is highly proficient in the skill s3, τ(e1, s3) = 0.1 em-
ployee e1 is slightly uncertain about e′1s proficient in the skill s3 and η(e1, s3) = 0.2
employee e1 lacks proficient in the skill s3, and so on.

Definition 2.9 ([30]). Let U ∈ PFMR(N × N). Then the inverse relation of U,
denoted by U−1, is defined by for all r1, r2 ∈ N ×N,

σk
U−1(r2, r1) = σk

U (r1, r2), τkU−1(r2, r1) = τkU (r1, r2), ηkU−1(r2, r1) = ηkU (r1, r2).

Definition 2.10 ([30]). Let U, V ∈ PFMR(N1 × N2). Then U ⊆ V if for every
r1, r2 ∈ N ×N, (σk

U (r1, r2) ≤ σk
V (r1, r2)), (τkU (r1, r2) ≤ τkV (r1, r2)) and (ηkU (r1, r2) ≥

ηkV (r1, r2)); k = 1, 2, · · · , n. If U ⊆ V and V ⊆ U, then U = V.

Definition 2.11 ([30]). Let U, V ∈ PFMR(N1×N2). Then U ∪V is a PFMR such
that

σk
U∪V (r1, r2) =

∨
{σk

U (r1, r2), σk
V (r1, r2)},

τkU∪V (r1, r2) =
∧
{τkG(r1, r2), τkH(r1, r2)}

and

ηkU∪V (r1, r2) =
∧
{ηkU (r1, r2), ηkV (r1, r2)}

k = 1, 2, · · · , n

Definition 2.12 ([30]). Let U, V ∈ PFMR(N1×N2). Then U ∩V is a PFMR such
that

σk
U∩V (r1, r2) =

∧
{σk

U (r1, r2), σk
V (r1, r2)},

τkU∩V (r1, r2) =
∧
{τkU (r1, r2), τkV (r1, r2)}

and

ηkU∩V (r1, r2) =
∨
{ηkU (r1, r2), ηkV (r1, r2)}

k = 1, 2, · · · , n

Proposition 2.13 ([30]). Let U, V,W ∈ PFMR(Z1 × Z2). Then
(1) (U−1)−1 = U ,
(2) (U ∪ V )−1 = U−1 ∪ V −1,
(3) (U ∩ V )−1 = U−1 ∩ V −1,
(4) U ∩ (V ∪W ) = (U ∩ V ) ∪ (V ∩W ),
(5) U ∪ (V ∩W ) = (U ∪ V ) ∩ (V ∪W ).
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Definition 2.14 ([30]). Let U = {〈(r1, r2), σk
1 (r1, r2), τk1 (r1, r2), ηk1 (r1, r2)〉|(r1, r2) ∈

N×N} and V = {〈(r1, r2), σk
2 (r1, r2), τk2 (r1, r2), ηk2 (r1, r2)〉|(r1, r2) ∈ N×N}, where

k = 1, 2, · · · , β (β is the cardinality of the PFMS N) be two PFMRs on N. Then
the composite relation U ◦ V is a PFMR defined by

U ◦ V = {〈(r1, r3), σk
1 ◦ σk

2 (r1, r3), τk1 ◦ τk2 (r1, r3), ηk1 ◦ ηk2 (r1, r3)〉|(r1, r3) ∈ N ×N},

where

σk
1 ◦ σk

2 (r1, r3) =
∨
{σk

1 (r1, r2)
∧
σk
2 (r2, r3)}, r2 ∈ N,

τk1 ◦ τk2 (r1, r3) =
∧
{τk1 (r1, r2)

∧
τk2 (r2, r3)}, r2 ∈ N

and

ηk1 ◦ ηk2 (r1, r3) =
∧
{ηk1 (r1, r2)

∨
ηk2 (r2, r3)}, r2 ∈ N

are called the positive membership, neutral membership and negative membership
functions, respectively.

Proposition 2.15 ([30]). Let U ∈ PFMR(N1 × N2) and V ∈ PFMR(N2 × N3).
Then V ◦ U is in PFMR(N1 ×N3).

Proposition 2.16 ([30]). Let U ∈ PFMR(N1 × N2) and V ∈ PFMR(N2 × N3).
Then (V ◦ U)−1 = U−1 ◦ V −1

Proposition 2.17 ([30]). Let U, V ∈ PFMR(N2×N3) and W ∈ PFMR(N1×N2).
Then

(1) (V ∩U) ◦W = (V ◦W )∩(U ◦W ),
(2) (V ∪U) ◦W = (V ◦W )∪(U ◦W ).

Proposition 2.18 ([30]). Let V ∈ PFMR(N1 ×N2), U ∈ PFMR(N2 ×N3) and
W ∈ PFMR(Z3 × Z4). Then (W ◦ U) ◦ V = W ◦ (U ◦ V ).

Proof.

σk
(W◦U)◦V (r1, r4) =

∨
r2

{σk
V (r1, r2) ∧ (σk

W◦U )(r2, r3)}

=
∨
r2

{σk
V (r1, r2) ∧ {

∨
r3

{σk
U (r2, r3) ∧ σk

W (r3, r4)}}}

=
∨
r2

{
∨
r3

{σk
V (r1, r2) ∧ {σk

U (r2, r3) ∧ σk
W (r3, r4)}}}

=
∨
r2

{
∨
r3

{σk
V (r1, r2) ∧ σk

U (r2, r3)} ∧ σk
W (r3, r4)}

=
∨
r3

{σk
U◦V (r1, r3) ∧ σk

W (r3, r4)

= σk
W◦(U◦V )(r1, r4)
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τk(W◦U)◦V (r1, r4) =
∧
r2

{τkV (r1, r2) ∧ (τkW◦U )(r2, r3)}

=
∧
r2

{τkV (r1, r2) ∧ {
∧
r3

{τkU (r2, r3) ∧ τkW (r3, r4)}}}

=
∧
r2

{
∧
r3

{τkV (r1, r2) ∧ {τkU (r2, r3) ∧ τkW (r3, r4)}}}

=
∧
r2

{
∧
r3

{τkV (r1, r2) ∧ τkU (r2, r3)} ∧ τkW (r3, r4)}

=
∧
r3

{τkU◦V (r1, r3) ∧ τkW (r3, r4)

= τkW◦(U◦V )(r1, r4)

ηk(W◦U)◦V (r1, r4) =
∧
r2

{ηkV (r1, r2) ∧ (ηkW◦U )(r2, r3)}

=
∧
r2

{ηkV (r1, r2) ∧ {
∧
r3

{ηkU (r2, r3) ∧ ηkW (r3, r4)}}}

=
∧
r2

{
∧
r3

{ηkV (r1, r2) ∧ {ηkU (r2, r3) ∧ ηkK(r3, r4)}}}

=
∧
r2

{
∧
r3

{ηkV (r1, r2) ∧ ηkU (r2, r3)} ∧ ηkW (r3, r4)}

=
∧
r3

{ηkU◦V (r1, r3) ∧ ηkW (r3, r4)

= ηkW◦(U◦V )(r1, r4)

�

Definition 2.19 ([31]). Let U = {〈(r1, r2), σk
U (r1, r2), τkU (r1, r2), ηkU (r1, r2)〉|(r1, r2) ∈

N ×N}, where k = 1, 2, · · · , β (β is the cardinality of the PFMS N.) Then U is said
to be reflexive, if

σk
U (r, r) = 1, τkU (r, r) = 0, and ηkU (r, r) = 0.

k = 1, 2, · · · , β (β is the cardinality of N) for all r ∈ N.

Proposition 2.20 ([31]). Let U ∈ PFMR(N ×N) be reflexive. Then
(1) U−1 is reflexive if and only if U = U−1,
(2) U ∨ V is reflexive for every V ∈ PFMR(N ×N),
(3) U ∧ V is reflexive if and only if V ∈ PFMR(N ×N) is reflexive.

Proposition 2.21 ([31]). If U and V are reflexive PFMRs, then U ∪ V and U ∩ V
are reflexive PFMRs.

Definition 2.22 ([31]). Let U ∈ PFMR(N×N). Then U is said to be Symmetric,
if

σk
U (r1, r2) = σk

U (r2, r1), τkU (r1, r2) = τkU (r2, r1), and ηkU (r1, r2) = ηkU (r2, r1).
7
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i = 1, 2, · · · , β (β is the cardinality of N) for all r1, r2 ∈ N.

Proposition 2.23 ([31]). If U is symmetric, then U−1 is also symmetric.

Proposition 2.24 ([31]). Let U ∈ PFMR(N × N). Then U is symmetric if and
only if U = U−1.

Proposition 2.25 ([31]). If U and V are symmetric PFMRs, then U ∩V and U ∪V
are symmetric PFMRs.

Proposition 2.26 ([31]). Given U ∈ PFMR(N1×N2) and V ∈ PFMR(N2×N3).
Then U ◦ V is symmetric if and only if U ◦ V = V ◦ U, for symmetric relations U
and V.

Definition 2.27 ([31]). Let U ∈ PFMR(N ×N). Then U is said to be transitive,
if U ◦ U ⊆ U.

Transitivity can also be defined as;

Definition 2.28 ([31]). Let U ∈ PFMR(N ×N). Then, U is said to be transitive,
if for every triplet (r1, r2, r3) in N ×N ×N whenever (r1, r2) and (r2, r3) ∈ U with
certain degrees of relatedness σk

U (r1, r2) and σk
U (r2, r3), τkU (r1, r2) and τkU (r2, r3),

ηkU (r1, r2) and ηkU (r2, r3) then (r1, r3) ∈ U with a degree of relatedness

σk
U (r1, r3) ≥

∧
{σk

U (r1, r2), σk
U (r2, r3)},

τkU (r1, r3) ≤
∨
{τkU (r1, r2), τkU (r2, r3)}

and

ηkU (r1, r3) ≤
∨
{ηkU (r1, r2), ηkU (r2, r3)},

respectively.

Proposition 2.29 ([31]). Let U be a transitive relation. Then U−1 is transitive if
and only if U = U−1.

Proposition 2.30 ([31]). If U and V are transitive, then U ∩ V is transitive but
U ∪ V not transitive.

Proof. Suppose U and V are transitive and let (r1, r2, r3) ∈ N × N × N. Then we
have

σk
U∩V (r1, r2) =

∧
{σk

U (r1, r2), σk
U (r1, r2)},

τkU∩V (r1, r2) =
∨
{τkU (r1, r2), τkU (r1, r2)}

and

ηkU∩V (r1, r2) =
∨
{ηkU (r1, r2), ηkU (r1, r2)}.

For σk
U∩V (r1, r3),

σk
U∩V (r1, r3) =

∧
{σk

U (r1, r2), σk
U (r2, r3)}.

Since U and V are transitive, we have

σk
U (r1, r3) ≥

∧(
σk
U (r1, r2), σk

U (r2, r3)
)
.

8
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and

σk
V (r1, r3) ≥

∧(
σk
V (r1, r2), σk

V (r2, r3)
)

Thus we get ∧(
σk
U (r1, r3), σk

V (r1, r3)
)

≥
∧[∧(

σk
U (r1, r2), σk

U (r2, r3)
)
,
∧(

σk
V (r1, r2), σk

V (r2, r3)
)]
.

Since
∧(

σk
U∩V (r1, r2), σk

U∩V (r2, r3)
)

=
∧[∧(

σk
U (r1, r2), σk

V (r1, r2)
)
,
∧(

σk
U (r2, r3), σk

V (r2, r3)
)]
,

we have

σk
U∩V (r1, r3) ≥

∧(
σk
U∩V (r1, r2), σk

U∩V (r2, r3)
)
.

For τkU∩V (r1, r3),

τkU∩V (r1, r3) =
∨
{τkU (r1, r2), τkU (r2, r3)}.

Since U and V are transitive, we have

τkU (r1, r3) ≤
∨(

τkU (r1, r2), τkU (r2, r3)
)

and

τkV (r1, r3) ≤
∨(

τkV (r1, r2), τkV (r2, r3)
)
.

Thus we get∨(
τkU (r1, r3), τkV (r1, r3)

)
≤
∨[∨(

τkU (r1, r2), τkU (r2, r3)
)
,
∨(

τkV (r1, r2), τkV (r2, r3)
)]
.

Since
∨(

τkU∩V (r1, r2), τkU∩V (r2, r3)
)

=
∨[∨(

τkU (r1, r2), τkV (r1, r2)
)
,
∨(

τkU (r2, r3), τkV (r2, r3)
)]
,

we have

τkU∩V (r1, r3) ≤
∨(

τkU∩V (r1, r2), τkU∩V (r2, r3)
)

For ηkU∩V (r1, r3),

ηkU∩V (r1, r3) =
∨
{ηkU (r1, r2), ηkU (r2, r3)}.

Since U and V are transitive, we have

ηkU (r1, r3) ≤
∨(

ηkU (r1, r2), ηkU (r2, r3)
)

and

ηkV (r1, r3) ≤
∨(

ηkV (r1, r2), ηkV (r2, r3)
)
.

Thus we get∨(
ηkU (r1, r3), ηkV (r1, r3)

)
≤
∨[∨(

ηkU (r1, r2), ηkU (r2, r3)
)
,
∨(

ηkV (r1, r2), ηkV (r2, r3)
)]
.

Since
∨(

ηkU∩V (r1, r2), ηkU∩V (r2, r3)
)

=
∨[∨(

ηkU (r1, r2), ηkV (r1, r2)
)
,
∨(

ηkU (r2, r3), ηkV (r2, r3)
)]
,

we have

ηkU∩V (r1, r3) ≤
∨(

ηkU∩V (r1, r2), ηkU∩V (r2, r3)
)
.

So U ∩ V is transitive.
Next we show that U ∪ V is not transitive. This will be done using counter

example.
9
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Let N = {1, 2, 3}. Define relation U as

σU (1, 2) = 0.9, τU (1, 2) = 0.1 and ηU (1, 2) = 0.0,

σU (2, 3) = 0.8, τU (2, 3) = 0.1 and ηU (2, 3) = 0.1,

σU (1, 3) = 0.7, τU (1, 3) = 0.2 and ηU (1, 3) = 0.1.

Also, define relation V as

σV (1, 2) = 0.7, τV (1, 2) = 0.2 and ηV (1, 2) = 0.1,

σV (2, 3) = 0.6, τV (2, 3) = 0.3 and ηV (2, 3) = 0.1,

σV (1, 3) = 0.5, τV (1, 3) = 0.4 and ηV (1, 3) = 0.1.

For U,

σU (1, 3) = 0.7 ≥ ∧{0.9, 0.8} = 0.8,

τU (1, 3) = 0.2 ≤ ∨{0.1, 0.1} = 0.1

and

ηU (1, 3) = 0.2 ≤ ∨{0.0, 0.1} = 0.1.

For V,

σV (1, 3) = 0.5 ≥ ∧{0.7, 0.6} = 0.6,

τV (1, 3) = 0.4 ≤ ∨{0.2, 0.3} = 0.3

and

ηU (1, 3) = 0.1 ≤ ∨{0.1, 0.1} = 0.1.

Now, for U ∪ V,
σU∪V (1, 2) = ∨{0.9, 0.7} = 0.9,

τU∪V (1, 2) = ∧{0.1, 0.2} = 0.1

and

ηU∪V (1, 2) = ∧{0.0, 0.1} = 0.0

σU∪V (2, 3) = ∨{0.8, 0.6} = 0.8,

τU∪V (2, 3) = ∧{0.1, 0.3} = 0.1

and

ηU∪V (2, 3) = ∧{0.1, 0.1} = 0.1

σU∪V (1, 3) = ∨{0.7, 0.5} = 0.7,

τU∪V (1, 3) = ∧{0.2, 0.4} = 0.2

and

ηU∪V (1, 3) = ∧{0.1, 0.1} = 0.1.

So, checking transitivity for U ∪ V,
σU∪V (1, 3) = 0.7 6= ∧{σU∪V (1, 2), σU∪V (2, 3)} = ∧{0.9, 0.8} = 0.8.

10
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Since 0.7 < 0.8, i.e,

σU∪V (1, 3) 6= ∧{σU∪V (1, 2), σU∪V (2, 3)}

which implies that σU∪V (1, 3) does not satisfy the transitivity condition. Similarly,
τU∪V (1, 3) and τU∪V (1, 3) satisfy not the transitivity condition. Hence U ∪ V not
transitive. �

3. Picture fuzzy equivalence multiRelations

Definition 3.1 ([32]). Let N be a PFMS of X. Then the (r, s, t)-cut set of N,
denoted by Cr,s,t(N), is defined as

Cr,s,t(N) = {y ∈ X| σk
N (y) ≥ r, τkN (y) ≤ s, ηkN (y) ≤ t}.

Example 3.2. Let X = {a, b, c} and
N = {(a, {(0.7, 0.2, 0.1), (0.5, 0.3, 0.2)}), (b, {(0.6, 0.3, 0.1), (0.4, 0.3, 0.3)}),

(c, {(0.8, 0.1, 0.1), (0.3, 0.6, 0.1)})}.
Take r = 0.6, s = 0.4, t = 0.2. Then the (r, s, t)-cut set is

C0.6,0.4,.2(N) = {(a, (0.7, 0.2, 0.1)), (b, (0.6, 0.3, 0.1)), (c, (0.8, 0.1, 0.1))}.

The (r, s, t)-cut set of N simplifies the multiset by focusing on elements with signif-
icant positive, neutral and negative membership degrees.

Definition 3.3 ([27]). Let U be a PFR of X × X. Then the (r, s, t)-cut set of U,
denoted by Cr,s,t(U), is defined as

Cr,s,t(U) = {y1, y2 ∈ X ×X| σU (y1, y2) ≥ r, τU (y1, y2) ≤ s, ηU (y1, y2) ≤ t}.

Definition 3.4 ([30]). Let U be a PFMR of X ×X. Then the (r, s, t)-cut set of U,
denoted by Cr,s,t(U), is defined as

Cr,s,t(U) = {(y1, y2) ∈ X ×X| σk
U (y1, y2) ≥ r, τkU (y1, y2) ≤ s, ηkU (y1, y2) ≤ t},

where r, s, t ∈ [0, 1] such that 0 ≤ r + s+ t ≤ 1.

Example 3.5. Let X1 = {a, b}, X2 = {c, d} and
U = {((a, c), (0.7, 0.2, 0.1)), ((a, d)(0.5, 0.3, 0.2)), ((b, c)(0.8, 0.1, 0.1)), ((b, d)(0.3, 0.6, 0.1))}.
Take r = 0.6, s = 0.4, t = 0.2. Then the (r, s, t) cut set is

C0.6,0.4,0.2(U) = {((a, c)(0.7, 0.2, 0.1)), ((b, c), (0.8, 0.1, 0.1))}.

This (r, s, t)-cut set provides a crisp relation derived from the original PFMR by
applying thresholds r, s, and t which can also be used to analyse properties like
reflexivity, symmetry or transitivity for further exploration of the multirelation.
This can be seen in the next definition with example.

Definition 3.6. A PFMR U is said to be a picture fuzzy equivalence multirelation
(briefly, PFEMR), if U is reflexive, symmetric and transitive.

Example 3.7. Let X1 = {a, b, c} and
U = {((a, a), (0.9, 0.1, 0.0)), ((b, b)(0.9, 0.05, 0.05)), ((c, c)(1, , 0, 0)),

((a, b)(0.7, 0.2, 0.1)), ((b, a)(0.7, 0.2, 0.1)), ((a, c)(0.8, 0.1, 0.1)),
11
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((c, a)(0.8, 0.1, 0.1)), ((b, c)(0.6, 0.3, 0.1)), ((c, b)(0.6, 0.3, 0.1))}.
Take r = 0.6, s = 0.4, t = 0.2.
Reflexive:

For (a, a), σU (a, a) = 0.9 ≥ r, τU (a, a) = 0.1 ≤ s, ηU (a, a) = 0.0 ≤ t.
For (b, b), σU (b, b) = 0.9 ≥ r, τU (b, b) = 0.05 ≤ s, ηU (b, b) = 0.05 ≤ t.
For (c, c), σU (c, c) = 1 =≥ r, τU (c, c) = 0 ≤ s, ηU (c, c) = 0 ≤ t.

Then (a, a), (b, b), (c, c) ∈ R. Thus reflexive property holds.
Symmetric:

For (a, b), σU (a, b) = 0.7 ≥ r, τU (a, b) = 0.2 ≤ s, ηU (a, b) = 0.1 ≤ t.
For (b, a), σU (b, a) = 0.7 ≥ r, τU (b, a) = 0.2 ≤ s, ηU (b, a) = 0.1 ≤ t.
For (b, c), σU (b, c) = 0.6 ≥ r, τU (b, c) = 0.3 ≤ s, ηU (b, c) = 0.1 ≤ t.
For (c, b), σU (c, b) = 0.6 ≥ r, τU (c, b) = 0.3 ≤ s, ηU (c, b) = 0.1 ≤ t.
For (a, c), σU (a, c) = 0.8 ≥ r, τU (a, c) = 0.1 ≤ s, ηU (a, c) = 0.1 ≤ t.
For (a, c), σU (a, c) = 0.8 ≥ r, τU (a, c) = 0.1 ≤ s, ηU (a, c) = 0.1 ≤ t.

Then (a, b), (b, a), (b, c), (c, b), (a, c), (c, a) ∈ R. Thus symmetric property holds.
Transitive:

(a, b), (b, c) ∈ R ⇒ (a, c) ∈ R, since

σU (a, c) = 0.8 ≥ r, τU (a, c) = 0.1 ≤ s, ηU (a, c) = 0.1 ≤ t.
(b, c), (c, a) ∈ R ⇒ (b, a) ∈ R, since

σU (b, a) = 0.7 ≥ r, τU (b, a) = 0.2 ≤ s, ηU (b, a) = 0.1 ≤ t.
(b, a), (a, c) ∈ R ⇒ (b, c) ∈ R, since

σU (b, c) = 0.6 ≥ r, τU (b, c) = 0.3 ≤ s, ηU (b, c) = 0.1 ≤ t.
Similarly, we have

(a, c), (c, b) ∈ R⇒ (a, b) ∈ R,
(c, a), (a, b) ∈ R⇒ (c, b) ∈ R,
(c, b), (b, a) ∈ R⇒ (c, a) ∈ R.

Thus transitive property holds. So the (r, s, t)-cut set is

C0.6,0.4,0.2(U) = {(a, a)(b, b), (c, c), (a, b), (b, a), (b, c), (c, b), (a, c), (c, a)}.
Hence U is a PFEMR.

Theorem 3.8. Let U = {〈(y1, y2), σk
U (y1, y2), τkU (y1, y2), ηkU (y1, y2)〉|(y1, y2) ∈ X ×

X} be a PFMR on X. Then U is a PFEMR on X if and only if Cr,s,t(U) is an
equivalence relation on X with r, s, t ∈ [0, 1] and 0 ≤ r + s+ t ≤ 1.

Proof. Suppose that U is a PFEMR. Then we have

Cr,s,t(U) = {(y1, y2) ∈ X ×X| σk
U (y1, y2) ≥ r, τkU (y1, y2) ≤ s, ηkU (y1, y2) ≤ t}.

Thus σk
U (y, y) = 1 ≥ r, τkU (y, y) = 0 ≤ s and ηkU (y, y) = 0 ≤ t for all y ∈ X. So

(y, y) ∈ Cr,s,t(U) which means that Cr,s,t(U) is reflexive.
Now, let (y1, y2) ∈ Cr,s,t(U). Then σk

U (y1, y2) ≥ r, τkU (y1, y2) ≤ s and ηkU (y1, y2) ≤
t. Since U is a PFEMR, we get

σk
U (y2, y1) = σk

U (y1, y2) ≥ r,

τkU (y2, y1) = τkU (y1, y2) ≤ s,
12
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and

ηkU (y2, y1) = ηkU (y1, y2) ≤ t.
Thus (y2, y1) ∈ Cr,s,t(U), which means that Cr,s,t(U) is symmetric.

Also, let (y1, y2) ∈ Cr,s,t(U) and (y2, y3) ∈ Cr,s,t(U). Then we have

σk
U (y1, y2) ≥ r, τkU (y1, y2) ≤ s and ηkU (y1, y2) ≤ t

and

σk
U (y2, y3) ≥ r, τkU (y2, y3) ≤ s and ηkU (y2, y3) ≤ t.

Thus

σk
U (y1, y2)

∧
σk
U (y2, y3) ≥ r,

τkU (y1, y2)
∧
τkU (y2, y3) ≤ s

and

ηkU (y1, y2)
∨
ηkU (y2, y3) ≤ t

which imply that∨
{σk

U (y1, y2)
∧
σk
U (y2, y3)} ≥ r ⇒ (σk

U ◦ σk
U )(y1, y3) ≥ r∧

{τkU (y1, y2)
∧
τkU (y2, y3)} ≤ s⇒ (τkU ◦ τkU )(y1, y3) ≤ s∧

{ηkU (y1, y2)
∨
ηkU (y2, y3)} ≤ t⇒ (ηkU ◦ ηkU )(y1, y3) ≥ t.

Since U is a PFEMR, we get

σk
U (y1, y3) ≥ (σk

U ◦ σk
U )(y1, y3) ≥ r,

τkU (y1, y3) ≤ (τkU ◦ τkU )(y1, y3) ≤ s
and

ηkU (y1, y3) ≤ (ηkU ◦ ηkU )(y1, y3) ≤ t.
So (y1, y3) ∈ Cr,s,t(U), which means that Cr,s,t(U) is transitive. Hence Cr,s,t(U) is
an equivalence relation on X.

Conversely, Suppose that Cr,s,t(U) is an equivalence relation on X with r, s, t ∈
[0, 1] and 0 ≤ r+ s+ t ≤ 1, and let y ∈ X. Then clearly, (y, y) ∈ Cr,s,t(U). Note that
C1,0,0(U) is an equivalence relation on X. Thus we have

σk
U (y, y) ≥ 1, τkU (y, y) ≤ 0 and ηkU (y, y) ≤ 0.

So σk
U (y, y) = 1, τkU (y, y) = 0 and ηkU (y, y) = 0. Hence U is reflexive.

Next, given y1, y2 ∈ X, let σk
U (y1, y2) = r, τkU (y1, y2) = s and ηkU (y1, y2) = t.

Then (y1, y2) ∈ Cr,s,t(U). By the hypothesis, Cr,s,t(U) is symmetric. Thus (y2, y1) ∈
Cr,s,t(U). So we have

σk
U (y2, y1) ≥ r = σk

U (y1, y2), τkU (y2, y1) ≤ s = τkU (y1, y2) and ηkU (y2, y1) ≤ t = ηkU (y1, y2).

Similarly, if σk
U (y2, y1) ≥ l, τkU (y2, y1) ≤ m and ηkU (y2, y1) ≤ n, then (y1, y2) ∈

Cl,m,n(U). Now, we have

σk
U (y1, y2) ≥ l = σk

U (y2, y1), τkU (y1, y2) ≤ m = τkU (y2, y1) and ηkU (y1, y2) ≤ n = ηkU (y2, y1).

Hence σk
U (y1, y2) = σk

U (y2, y1), τkU (y1, y2) = τkU (y2, y1) and ηkU (y1, y2) = ηkU (y2, y1).
Therefore U is symmetric.

13
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Finally, given y1, y2, y3 ∈ X, let

σk
U (y1, y2) ∧ σk

U (y2, y3) = r,

τkU (y1, y2) ∧ τkU (y2, y3) = s

and

ηkU (y1, y2) ∨ ηkU (y2, y3) = t,

where r ≥ 0, s < 1, t < 1 and 0 ≤ r + s+ t ≤ 1. Then we have

σk
U (y1, y2) ≥ r, σk

U (y2, y3) ≥ r,

τkU (y1, y2) ≤ s, τkU (y2, y3) ≤ s
and

ηkU (y1, y2) ≤ t, ηkU (y2, y3) ≤ t.
Thus (y1, y2) ∈ Cr,s,t(U) and (y2, y3) ∈ Cr,s,t(U). Since Cr,s,t(U) is transitive by the
hypothesis, (y1, y3) ∈ Cr,s,t(U). So we get

σk
U (y1, y3) ≥ r, τkU (y1, y3) ≤ s and ηkU (y1, y3) ≤ t.

Furthermore, we have the following implications:

σk
U (y1, y3) ≥ r = σk

U (y1, y2) ∧ σk
U (y2, y3)

τkU (y1, y3) ≤ s = τkU (y1, y2) ∧ τkU (y2, y3),

ηkU (y1, y3) ≤ t = ηkU (y1, y2) ∨ ηkU (y2, y3)

⇒
σk
U (y1, y3) ≥ ∨{σk

U (y1, y2) ∧ σk
U (y2, y3)},

τkU (y1, y3) ≤ ∧{τkU (y1, y2) ∧ τkU (y2, y3)}.

ηkU (y1, y3) ≤ ∧{ηkU (y1, y2) ∨ ηkU (y2, y3)}
⇒

σk
U (y1, y3) ≥ (σk

U ◦ σk
U )(y1, y3),

τkU (y1, y3) ≤ (τkU ◦ τkU )(y1, y3),

ηkU (y1, y3) ≤ (ηkU ◦ ηkU )(y1, y3).

⇒ σk
U ⊇ σk

U ◦ σk
U , τ

k
U ⊆ τkU ◦ τkU , ηkU ⊆ ηkU ◦ ηkU . Hence U is transitive. Therefore

U is a PFEMR. �

Definition 3.9. Let U = {〈(y1, y2), σk
U (y1, y2), τkU (y1, y2), ηkU (y1, y2)〉|(y1, y2) ∈ X×

X} be a PFEMR on X and p ∈ X. Then the PFMS pU defined by

pU = {(y, pσk
U (y), pτkU (y), pηkU (y) | y ∈ X)},

where

(pσk
U )(y) = σk

Up
y, pτkU )(y) = τkUp

y and pηkU )(y) = ηkUp
y.

for all y ∈ X is called a picture fuzzy equivalence multiclass (PFEMC) of p with
respect to U.

14
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Example 3.10. Let X = {a, b, c} and consider the PFEMR on X given by
U = {((a, a), (0.9, 0.1, 0.0)), ((b, b)(0.9, 0.05, 0.05)), ((c, c)(1.0, , 0.0, 0.0)),

((a, b)(0.7, 0.2, 0.1)), ((b, a)(0.7, 0.2, 0.1)), ((a, c)(0.8, 0.1, 0.1)),
((c, a)(0.8, 0.1, 0.1)), ((b, c)(0.6, 0.3, 0.1)), ((c, b)(0.6, 0.3, 0.1))}.

Take r = 0.6, s = 0.3, t = 0.1. Then we have

σU (a, a) ≥ 0.6, τU (a, a) ≤ 0.3, ηU (a, a) ≤ 0.1,

σU (a, b) ≥ 0.6, τU (a, b) ≤ 0.3, ηU (a, b) ≤ 0.1,

σU (a, c) ≥ 0.6, τU (a, c) ≤ 0.3, ηU (a, c) ≤ 0.1;

⇒ aU = (a, a)(a, b)(a, c) = {a, b, c}

σU (b, b) ≥ 0.6, τU (b, b) ≤ 0.3, ηU (b, b) ≤ 0.1,

σU (b, c) ≥ 0.6, τU (b, c) ≤ 0.3, ηU (b, c) ≤ 0.1,

σU (b, a) ≥ 0.6, τU (b, a) ≤ 0.3, ηU (b, a) ≤ 0.1;

⇒ bU = (b, b)(b, c)(b, a) = {a, b, c}

σU (c, c) ≥ 0.6, τU (c, c) ≤ 0.3, ηU (c, c) ≤ 0.1,

σU (c, a) ≥ 0.6, τU (c, a) ≤ 0.3, ηU (c, a) ≤ 0.1,

σU (c, b) ≥ 0.6, τU (c, b) ≤ 0.3, ηU (c, b) ≤ 0.1

Thus aU = bU = cU = {a, b, c}. So U partitions X into equivalence classes, consis-
tent with the properties of reflexivity, symmetry and transitivity.

This ensures that the equivalence class includes element with sufficiently high posi-
tive membership and controlled levels of neutral and negative memberships.

Theorem 3.11. Let U = {〈(y1, y2), σk
U (y1, y2), τkU (y1, y2), ηkU (y1, y2)〉|(y1, y2) ∈ X×

X} be a PFEMR on X and p ∈ X. Then for r, s, t ∈ [0, 1] with 0 ≤ r + s + t ≤ 1,
Cr,s,t(pU) = [p] is the equivalence class of p with respect to the equivalence relation
Cr,s,t(U) on X.

Proof.

[p] = {y ∈ X | (py) ∈ Cr,s,t(U)}
= {y ∈ X | σk

Up
y ≥ r, τkUpy ≤ s, ηkUpy ≤ t}

= {y ∈ X | (pσk
U )(y) ≥ r, (pτkU )(y) ≤ s, (pηkU )(y) ≤ t}

= Cr,s,t(pU).

�

Theorem 3.12. Let U = {〈(y1, y2), σk
U (y1, y2), τkU (y1, y2), ηkU (y1, y2)〉|(y1, y2) ∈ X×

X} be a PFEMR on X. Then [p] = [q] if and only if (p, q) ∈ Cr,s,t(U) where [p] and
[q] are equivalence classes of p and q with respect to the equivalence relation Cr,s,t(U)
in X for r, s, t ∈ [0, 1] with 0 ≤ r + s+ t ≤ 1.
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Proof. Suppose [p] = [q]. Then Cr,s,t(pU) = Cr,s,t(qU). Thus
{y ∈ X | (pσk

U )(y) ≥ r, (pτkU )(y) ≤ s, (pηkU )(y) ≤ t}
= {y ∈ X | (qσk

U )(y) ≥ r, (qτkU )(y) ≤ s, (qηkU )(y) ≤ t}.
Let y ∈ Cr,s,t(pU) = Cr,s,t(qU). Then we have

(pσk
U )(y) ≥ r, (pτkU )(y) ≤ s, (pηkU )(y) ≤ t and

(qσk
U )(y) ≥ r, (qτkU )(y) ≤ s, (qηkU )(y) ≤ t

⇒ σk
Up

y ≥ r, τkUpy ≤ s, ηkUpy ≤ t and σk
Uq

y ≥ r, τkUqy ≤ s, ηkUqy ≤ t
⇒ (σk

Up
y ∧ σk

Uq
y) ≥ r, (τkUpy ∧ τkUqy) ≤ s, (ηkUpy ∨ ηkUqy) ≤ t

⇒ ∨(σk
Up

y ∧ σk
Uq

y) ≥ r,∧(τkUp
y ∧ τkUqy) ≤ s,∧(ηkUp

y ∨ ηkUqy) ≤ t
⇒ (σk

U ◦ σk
U ) ≥ r, (τkU ◦ τkU ) ≤ s and (ηkU ◦ ηkU ) ≤ t

⇒ (p, q) ∈ Cr,s,t(U).
Conversely, suppose the necessary condition holds and let (p, q) ∈ Cr,s,t(U). Then

(3.1) σk
U (p, q) ≥ r, τkU (p, q) ≤ s, ηkU (p, q) ≤ t.

Let y ∈ Cr,s,t(pU). Then we have
(pσk

U )(y) ≥ r, (pτkU )(y) ≤ s, (pηkU )(y) ≤ t
⇒ σk

Up
y ≥ r, τkUpy ≤ s, ηkUpy ≤ t

⇒ (σk
Uq

p ∧ σk
Up

y) ≥ r, (τkUqp ∧ τkUpy) ≤ s, (ηkUqp ∨ ηkUpy) ≤ t [By (3.1)]
⇒ ∨(σk

Uq
p ∧ σk

Up
y) ≥ r,∧(τkUq

p ∧ τkUpy) ≤ s and ∧ (ηkUq
p ∨ ηkUpy) ≤ t

⇒ (σk
U ◦ σk

U ) ≥ r, (τkU ◦ τkU ) ≤ s and (ηkU ◦ ηkU ) ≤ t
⇒ (qσk

U )(y) ≥ r, (qτkU )(y) ≤ s and (qηkU )(y) ≤ t
⇒ (p, q) ∈ Cr,s,t(qU).

Thus we get

(3.2) Cr,s,t(pU) ⊆ Cr,s,t(qU).

Similarly, let y ∈ Cr,s,t(qU). Then we have
(qσk

U )(y) ≥ r, (qτkU )(y) ≤ s, (qηkU )(y) ≤ t
⇒ σk

Uq
y ≥ r, τkUqy ≤ s, ηkUqy ≤ t

⇒ (σk
Up

q ∧ σk
Uq

y) ≥ r, (τkUpq ∧ τkUqy) ≤ s, (ηkUpq ∨ ηkUqy) ≤ t [By (3.1)]
⇒ ∨(σk

Up
q ∧ σk

Uq
y) ≥ r,∧(τkUp

q ∧ τkUqy) ≤ s and ∧ (ηkUp
q ∨ ηkUqy) ≤ t

⇒ (σk
U ◦ σk

U ) ≥ r, (τkU ◦ τkU ) ≤ s and (ηkU ◦ ηkU ) ≤ t
⇒ (pσk

U )(y) ≥ r, (pτkU )(y) ≤ s and (pηkU )(y) ≤ t
⇒ (q, p) ∈ Cr,s,t(pU).

Thus we get

(3.3) Cr,s,t(qU) ⊆ Cr,s,t(pU).

So by (3.2) and (3.3), Cr,s,t(qU) = Cr,s,t(pU).
Hence [p] = [q]. �

Theorem 3.13. Let

U = {〈(y1, y2), σk
U (y1, y2), τkU (y1, y2), ηkU (y1, y2)〉|(y1, y2) ∈ X ×X}

and

V = {〈(y1, y2), σk
V (y1, y2), τkV (y1, y2), ηkV (y1, y2)〉|(y1, y2) ∈ X ×X}

be two PFEMRs on X. Then U ∩ V is a PFEMR on X.
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Proof. Let r, s, tin[0, 1] with 0 ≤ r + s+ t ≤ 1. Then we have

Cr,s,t(U ∩ V ) = Cr,s,t(U) ∩ Cr,s,t(V ).

We know that Cr,s,t(U) and Cr,s,t(V ) are equivalence relations on X. So Cr,s,t(U ∩V )
is also an equivalence relation on X. �

Remark 3.14. Union of two PFEMRs on a set need not be a PFEMR (See Example
3.15).

Example 3.15. Let N = {1, 2, 3} and consider two PFEMRs U and V on N defined
as follows:

σU (1, 1) = σU (2, 2) = σU (3, 3) = 1,

τU (1, 1) = τU (2, 2) = τU (3, 3) = 0,

ηU (1, 1) = ηU (2, 2) = ηU (3, 3) = 0,

σU (1, 2) = σU (2, 1) = 0.8,

τU (1, 2) = τU (2, 1) = τU (2, 3) = τU (3, 2) = ηU (1, 2) = ηU (2, 1) = 0.1,

σU (1, 3) = σU (3, 1) = 0.6,

σU (2, 3) = σU (3, 2) = 0.7,

τU (1, 3) = τU (3, 1) = ηU (1, 3) = ηU (3, 1) = ηU (2, 3) = ηU (3, 2) = 0.2.

Also,

σV (1, 1) = σV (2, 2) = σV (3, 3) = 1,

τV (1, 1) = τV (2, 2) = τV (3, 3) = 0,

ηV (1, 1) = ηV (2, 2) = ηV (3, 3) = 0,

σV (1, 2) = σV (2, 1) = 0.8,

τV (1, 2) = τV (2, 1) = ηV (1, 2) = ηV (2, 1) = 0.05,

σV (1, 3) = σV (3, 1) = τV (1, 3) = τV (3, 1) = 0.4,

σV (2, 3) = σV (3, 2) = 0.3,

τV (2, 3) = τV (3, 2) = 0.6,

ηV (1, 3) = ηV (3, 1) = ηV (2, 3) = ηV (3, 2) = 0.1.

Checking the transitivity,

σU∪V (1, 3) ≥ ∧{σU (1, 2), σU (2, 3)}
≥ ∧(0.8, 0.7)

≥ 0.7.

But σU∪V (1, 3) = 0.6. Then σU∪V (1, 3) = 0.6 � 0.7. Thus transitivity property
fails. So the union of two PFEMRs is not a PFEMR.
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4. Conclusions

In this paper, the notion of picture fuzzy equivalence multirelations over picture
fuzzy multisets via (r, s, t)-cut set of picture fuzzy multirelations was introduced,
and some of the properties related to them were investigated. We have established
that a picture fuzzy multirelation over a picture fuzzy multiset is a picture fuzzy
equivalence multirelation if and only if the cut set of the picture fuzzy multirelation
is an equivalence relation. It was also proved that the two picture fuzzy equivalence
classes of a picture fuzzy equivalence multirelation are equal with respect to the
cut set of picture fuzzy equivalence multirelation. Furthermore, we have established
that the intersection of two picture fuzzy equivalence multirelations on a picture
fuzzy multiset is again a picture fuzzy equivalence multirelation on the picture fuzzy
multiset but their union need not be a picture fuzzy equivalence multirelation. In
future work, applications of PFEMR in decision-making, clustering as well as data
analysis will be explored.

Acknowledgements. The authors are grateful to the Editor-in-Chief Professor
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the quality this paper.
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